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ABSTRACT
In this paper, we show how to design an efficient, provably
secure password-based authenticated key exchange mech-
anism specifically for the TLS (Transport Layer Security)
protocol. The goal is to provide a technique that allows
users to employ (short) passwords to securely identify them-
selves to servers. As our main contribution, we describe
a new password-based technique for user authentication in
TLS, called Simple Open Key Exchange (SOKE). Loosely
speaking, the SOKE ciphersuites are unauthenticated Diffie-
Hellman ciphersuites in which the client’s Diffie-Hellman
ephemeral public value is encrypted using a simple mask
generation function. The mask is simply a constant value
raised to the power of (a hash of) the password.

The SOKE ciphersuites, in advantage over previous pass-
word-based authentication ciphersuites for TLS, combine
the following features. First, SOKE has formal security ar-
guments; the proof of security based on the computational
Diffie-Hellman assumption is in the random oracle model,
and holds for concurrent executions and for arbitrarily large
password dictionaries. Second, SOKE is computationally ef-
ficient; in particular, it only needs operations in a sufficiently
large prime-order subgroup for its Diffie-Hellman computa-
tions (no safe primes). Third, SOKE provides good protocol
flexibility because the user identity and password are only
required once a SOKE ciphersuite has actually been negoti-
ated, and after the server has sent a server identity.
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1. INTRODUCTION
1.1 Motivation
An increasing number of Internet systems all around the
world are using open-source products. For examples, in the
categories of operating systems, browsers, webservers, and
cryptographic engines, open-source software products such
as Linux, Mozilla, Apache, and OpenSSL are widely fielded.
For building Grid systems and applications, the reference
is the Globus toolkit1. This toolkit unlocks the computing
power of the Internet by enabling users to tap a global net-
work of computer systems to access information and large
distributed processing power [16]. Grid security is based
on the recognition that individual sites have their own lo-
cal security policies and methods to enforce it [17]. Joining
a grid does not force a site to radically change its security
policies already in place, but rather to make them inter-
operable with the general grid policy. This requirement led
to the implementation in the Globus Toolkit of a security
infrastructure based on the OpenSSL software and X.509
identity certificates. Recent security compromises of user
and server machines, however, have resulted in site security
policy changes. Many sites are changing their security poli-
cies to prohibit long-term private keys associated with X.509
certificates from being stored on a user’s machine. The keys

1http://www.globus.org/



will instead be stored on servers in data centers where they
can be protected better.

The immediate need for Grids is a cryptographic technol-
ogy that allows users to securely identify themselves to data
centers using passwords (short enough to be memorized)
and be issued short-lived public/private keys [15]. The sim-
plest approach is to use the OpenSSL implementation of the
TLS protocol’s unilateral-authentication mode [13] and add
a straightfoward password check: the (credential repository)
server sends its X.509 certificate for explicit verification,
then the user sends his password through the TLS secure
channel. This is what typically happens in the MyProxy
(open-source) software for managing grid security creden-
tials2, and generally in most of today’s “secure” WWW ap-
plications. This approach, however, provides a false sense
of security because the privacy of the user’s password is lost
if the server is actually not authentic (“phishing” attacks),
and, hence, anything protected through the password could
get compromised. The password can be exposed when a user
accepts a bogus server certificate, which usually takes just a
single mouse click. And this is not all—security is in fact to-
tally dependent on the X.509 public-key infrastructure used
for server authentication: any party with a certificate appar-
ently issued to the legitimate server can potentially obtain
the password from the client. A single trusted Certification
Authority (CA) that is malicious or careless would do lot
of harm! Sending a one-time password in place of the fixed
password would not help either since the bogus server could
turn around and use this one-time password to impersonate
the user.

1.2 Contributions
This paper alleviates the above problem by presenting a
technique that ties the user’s authentication to the TLS se-
cure channel. We present a high-level description of this
technique in TLS and a security analysis in the tradition of
provable security. The technique goes under the name of
Simple Open Key Exchange (SOKE). Using SOKE for TLS
combines the following three features, in advantage over
previous password-based authentication ciphersuites in TLS
[23, 24]:

1. SOKE has formal security arguments (in the random
oracle model under the computational Diffie-Hellman
(CDH) assumption, based on Abdalla et al.’s security
definitions for password-based authenticated key ex-
change [3]).

2. SOKE is computationally efficient because it can work
in an appropriate subgroup of the multiplicative group
of a prime field without requiring a “safe prime”; sim-
ilarly, it could be used with elliptic curves or other
groups. Thus, the computations for SOKE can use
smaller exponents than those required for [23] or [24].
(The protocol described in [23] does not need safe
primes, but it does not solely work in the subgroup.
Rather, it involves an exponentiation to map arbitrary
elements of Z∗

p to subgroup elements: the smaller the
subgroup, the larger the exponent for this exponenti-
ation. SOKE, in contrast, uses only the subgroup.)

2http://grid.ncsa.uiuc.edu/myproxy/

3. SOKE does not require conveying the user identity
in the very first TLS handshake messages (known as
ClientHello). This feature (also present in [23], but
not in [24]) provides additional protocol flexibility: the
user does not have to specify a user identity and pass-
word before a SOKE ciphersuite has actually been ne-
gotiated, so these values can be chosen depending on
the server identity transmitted by the server.

SOKE ciphersuites for TLS (SOKE-TLS in short) are es-
sentially unauthenticated Diffie-Hellman ciphersuites where
the client’s Diffie-Hellman ephemeral public value is encryp-
ted under the password shared with the server; the encryp-
tion primitive is a mask generation function computed as
the product of the message with a constant value raised
to the power of the password. Full TLS handshakes ne-
gotiating a SOKE ciphersuite require modifications to the
usual TLS handshake message flow to achieve security: the
usual Finished messages of the TLS protocol, which are
sent under the newly negotiated cryptographic parameters
(after ChangeCipherSpec), are replaced by Authenticator

messages, which are similar in meaning to the Finished mes-
sages but must be sent under the old cryptographic parame-
ters (namely, before ChangeCipherSpec)—that is, typically
(in the case of an initial handshake) unencrypted. Also,
while usually the client sends its Finished message first,
here the server has to send its Authenticator message first.
The client can only send its Authenticator message af-
ter having verified the server’s Authenticator message (to
avoid dictionary attacks since otherwise a rogue server could
try a brute force attack on the client’s password [23]).

1.3 Related Work
A Password-based Authenticated Key Exchange (PAKE) is
a key exchange [14, 22] with one [19] or two flows [8, 9]
encrypted using the password as a common symmetric key.
Bellare et al. [5, 7], Boyko et al. [10], and MacKenzie [10, 20]
proposed and proved secure various PAKE structures. These
structures were later proved forward-secure under various
computational assumptions [2, 11, 12, 18]. Instantiations
for the encryption primitive were either a password-keyed
symmetric cipher or a mask generation function computed
as the product of the message with the hash of a password,
until Abdalla et al. proposed the Simple PAKE (SPAKE-)
structure with a new mask generation function computed
as the product of the message with a constant value raised
to the power of the password [4]. Whereas earlier mask
generation functions need a full-domain hash function into
the group, SPAKE provides high flexibility in the choice of
groups (e.g., this makes it easy to work with elliptic curves).
The SOKE structure, described in the present paper, is the
SPAKE structure with only one flow encrypted.

1.4 Organization
The paper is organized as follows. In Section 2, we define
the formal security model that we use through the rest of
the paper. In Section 3, we present the algorithmic assump-
tions upon which the security of the SOKE scheme and, thus,
SOKE-TLS is based. In Section 4, we describe SOKE-TLS
itself, and in Section 5 we prove that it is secure via a reduc-
tion from SOKE-TLS to the computational Diffie-Hellman
problem. We finally conclude the paper by presenting our



long-term objective and by describing the steps we have un-
dertaken to achieve it.

2. FORMAL MODEL FOR PASSWORD AU-
THENTICATION

In this section, we recall the security model of Abdalla et
al. [3] for password-based authenticated key exchange pro-
tocol, which in turn implies that of Bellare et al. [5].

2.1 Using Weak Passwords
A password-based authenticated key exchange protocol P
is a protocol between two parties, a client C ∈ client and
a server S ∈ server. Each participant in a protocol may
have several instances, called oracles, involved in distinct,
possibly concurrent, executions of P . We let U i denote the
instance i of a participant U , which is either a client or a
server.

Each client C ∈ client holds a password pwC . (Actually, in
practice a client implementation will typically work on be-
half of a user, where a single user may be using the same
password with different client implementations, and where
multiple users may be employing the same client implemen-
tation that queries the current user for the respective pass-
word. Also, a single user may be acting as multiple vir-
tual users by using different passwords in different contexts.
However, in the abstract view of the security model, we
neglect these fine points and consider only abstract clients
instead, which combine the knowledge of a single password
with the computational capabilities of a client implementa-
tion.)

If a server S ∈ server has been set up for key exchange with
a given client C, this means that the respective server was
handed a value pwS [C] for said client. The value pwS [C] is
denoted a derived password [5]. Schemes where pwS [C] =
pwC are called symmetric; in general, pwS [C] may differ
from pwC .

pwC and pwS [C] are also referred to as the long-lived keys of
client C and server S. Each password pwC is considered to
be a low-entropy string, drawn from the dictionary Password
of size N , according to the uniform distribution.

2.2 Security Model
The interaction between an adversary A and the protocol
participants occurs only via oracle queries, which model the
adversary capabilities in a real attack (see literature for more
details [5, 12, 3].) The types of oracles available to the
adversary are as follows:

• Execute(Ci, Sj): The output of this query consists of
the messages exchanged during the honest execution
of the protocol. This models passive attacks.

• Send(U i, m): The output of this query is the message
that the instance U i would generate upon receipt of
message m. A query Send(U i, “start”) initializes the
key exchange protocol, and thus the adversary receives
the initial flow that the initiator would send to the
receiver. This models active attacks.

2.3 Security Notions
In order to define a notion of security for the key exchange
protocol, we consider a game in which the protocol P is
executed in the presence of the adversary A. In this game,
we first draw a password pw from Password, provide coin
tosses and oracles to A, and then run the adversary, letting
it ask any number of queries as described above, in any
order.

2.3.1 AKE Security
In order to model the privacy (semantic security) of the
session key, we consider the game Gameake(A, P ), in which
an additional oracle is made available to the adversary: the
Test(U i) oracle.

• Test(U i): This query tries to capture the adversary’s
ability to distinguish real keys from random ones. In
order to answer it, we need a private random coin b
(unique for the whole game) and then forward to the
adversary either the session key sk held by U i if b = 1
or a random key of the same size if b = 0.

The Test-oracle can be queried as many times as the adver-
sary A wants, but is available only if the queried instance U i

holds a key, i.e. has accepted the key exchange session. The
simple restriction is that in the random case the same ran-
dom answer will be obtained when querying two partners.
(Two player instances are said to be partners if they have
exchanged the same set of messages, and are thus expected
to hold the same session key.) When playing this game, the
goal of the adversary is to guess the hidden bit b involved in
the Test-queries, by outputting a guess b′. Let Succ denote
the event in which the adversary is successful and correctly
guesses the value of b. The AKE advantage of an adver-
sary A is then defined as Advake

P (A) = 2Pr[Succ] − 1. The
protocol P is said to be (t, ε)-AKE-secure if A’s advantage
is smaller than ε for any adversary A running with time t.
Note that the advantage of an adversary that simply guesses
the bit b is 0 in the above definition due to the rescaling of
the probabilities.

It is worth pointing out that, as proven in [3], any scheme
that is proven secure in the above model is also secure in
the model of Bellare et al. [5]. The converse, however, is
not necessarily true due to the non-tightness of the security
reduction (see [3] for more details).

2.3.2 Mutual Authentication
The above property essentially means that only the legiti-
mate participants can obtain the secret session key, and that
an outside adversary should not be able to learn informa-
tion about the key. This is also known as implicit authen-
tication. In addition to that property, a protocol is said to
achieve mutual authentication if each party can be ensured
that it has established a key with the players it intended
to. In the context of password-based protocols, authentica-
tion between the players is often done through authentica-
tors. Intuitively, an authenticator is a value that can only be
computed (except with small probability) with the knowl-
edge of a secret. The idea is that if a party has sent data
in the clear, it must subsequently provide an authenticator



relative to these data. We denote by SuccauthS (A) the suc-
cess probability of an adversary trying to impersonate the
server (i.e., the probability that a client will finish the key
exchange protocol accepting the adversary as an authenti-
cated server).

2.3.3 Forward-Secrecy
One additional security property to consider is that of
forward-secrecy. A key exchange protocol is called forward-
secure if the security of a session key between two partici-
pants is preserved even if one of these participants later is
compromised. In order to consider forward-secrecy, one has
to account for a new type of query, the Corrupt-query, which
models the compromise of a participant by the adversary.
This query is defined as follows:

• Corrupt(U): This query returns to the adversary the
long-lived key pwU for participant U . As in [5], we as-
sume the weak corruption model in which the internal
states of all instances of that user are not returned to
the adversary.

In order to define the AKE success probability in the pres-
ence of this new type of query, one should extend the re-
striction in the random case: all the executions completed
after the Corrupt-query are answered with the real session
key.

Let Succ denote the event in which the adversary success-
fully guesses the hidden bit b used by Test oracle. The
FS-AKE advantage of an adversary A is then defined as
Advake−fs

P (A) = 2Pr[Succ]− 1. The protocol P is said to be
(t, ε)-FS-AKE-secure if A’s advantage is smaller than ε
for any adversary A running with time t.

3. INTRACTABILITY ASSUMPTIONS
3.1 Diffie-Hellman Problems
The arithmetic is in a finite cyclic group G = 〈g〉 of or-
der a `-bit prime number q, where the operation is denoted
multiplicatively.

3.1.1 CDHg,G: Computational Diffie-Hellman
A (t, ε)-CDHg,G attacker, in a finite cyclic group G of
prime order q with g as a generator, is a probabilistic ma-
chine ∆ running in time t such that its success probability
Succcdh

g,G(∆), given random elements gx and gy to output gxy,
is greater than ε:

Succcdh
g,G(∆) = Pr[∆(gx, gy) = gxy] ≥ ε.

We denote by Succcdh
g,G(t) the maximal success probability

over every adversaries running within time t. The CDH-
Assumption states that Succcdh

g,G(t) ≤ ε for any t/ε not too
large.

3.1.2 PCCDHg,G: Password-Based Chosen-Basis
Computational Diffie-Hellman

The so-called password-based chosen-basis computational
Diffie-Hellman problem is a variation of the computational
Diffie-Hellman that is more appropriate to the password-
based setting: Let D = {1, . . . , n} be a dictionary contain-
ing n equally likely password values and let P be a public

injective map P from {1, . . . , n} into G. Now let us consider
an adversary that runs in two stages. In the first stage, the
adversary is given as input two random elements U and X
in G as well as the public injective map P and it outputs a
value Y in G (the chosen-basis). Next, we choose a random
password k ∈ {1, . . . , n} and give it to the adversary. We
also compute the mapping r = P(k) of the password k. The
goal of the adversary in this second stage is to output the
value K = CDHg,G(X, Y/Ur).

Note that an adversary that correctly guesses the password
k in its first stage can easily solve this problem by computing
r = P(k) and making, for instance, Y = g · Ur so that K =
X. Since we assume k to be chosen uniformly at random
from the dictionary {1, . . . , n}, an adversary that chooses
to guess the password and follow this strategy can succeed
with probability 1/n.

The idea behind the password-based chosen-basis computa-
tional Diffie-Hellman assumption is that no adversary can
do much better than the adversary described above: that is,
Succpccdh(t, n) cannot be significantly larger than 1/n, where
n is the size of the dictionary.

3.1.3 SPCCDHg,G: Set Password-Based Chosen-
Basis Computational Diffie-Hellman

This is a generalization of the above problem, in which the
adversary, in the second stage, outputs a set of candidates
for K. It wins if the set indeed contains K: Succspccdh(t, s, n)
is the maximal probability to output a valid set of size s,
within time t. The SPCCDHg,G problem is equivalent to the
CDHg,G problem as shown in Appendix A.

3.2 Pseudo-Random Functions
A pseudo-random function family (PRF) is a family of func-
tions F = (fk)k in Fm,n, the set of the functions from
{0, 1}m into {0, 1}n, indexed by a key k ∈ {0, 1}`, so that
for a randomly chosen `-bit key k, no adversary can dis-
tinguish the function fk from a truly random function in
Fm,n: we define the advantage Advprf

F (D, q) = |Prk[1 ←
Dfk ] − Prf [1 ← Df ]|, where D is a distinguisher, with an
oracle access to either a random instance fk in the given
family F or a truly random function f in Fm,n, and must
distinguish the two cases with at most q queries to the func-
tion oracle. We say that such a family is a (q, ε, t)-PRF if for
any distinguisher asking at most q queries to the oracle, its
advantage is less than ε, after a running time bounded by t.

3.3 Message Authentication Codes
A Message Authentication Code, say MAC = (MAC.Sign,
MAC.Verify), is made of the two following algorithms, with
a secret key sk uniformly distributed in {0, 1}`:

• The MAC generation algorithm MAC.Sign. Given a
message m and secret key sk ∈ {0, 1}`, MAC.Sign pro-
duces an authenticator µ. This algorithm might be
probabilistic.

• The MAC verification algorithm MAC.Verify. Given
an authenticator µ, a message m and a secret key sk,
MAC.Verify tests whether µ has been produced using
MAC.Sign on inputs m and sk.



The classical security level for MAC is to prevent existen-
tial forgeries, even for an adversary which has access to
the generation and the verification oracles. We denote by
Succmac(t, q) the maximum success probability of a forger
running within time t and making at most q queries to the
MAC.Sign oracle.

4. A SIMPLE OPEN KEY EXCHANGE FOR
TLS (SOKE-TLS)

In this section, we describe the Diffie-Hellman Simple
Open Key Exchange (SOKE), an efficient, provably secure
password-based authenticated key exchange for TLS cipher-
suites. The proof of security is based on the computational
Diffie-Hellman assumption and holds in the random oracle
model. The use of the random oracles, however, is very
limited. More precisely, we only model a hash function as a
random oracle during the extraction of the pre-master secret
from the Diffie-Hellman result.

As described below, the protocol does use the password in
the key derivation process. As it will become clear in the
next section, this simple enhancement plays a major role in
the security of SOKE and enables us to prove its forward-
security under concurrent executions without imposing any
restrictions on the size of the dictionary.

4.1 The Handshake
Figure 1 illustrates the full TLS handshake for the case of
SOKE-TLS ciphersuites. Since the abbreviated handshake
for resuming a previously negotiated session is performed
exactly as in other TLS ciphersuites, we only discuss the
details of the full handshake.

1. Choose Ciphersuite. The client and the server ne-
gotiate the ciphersuite to use and exchange nonces.

(a) The client sends its list of supported ciphersuites,
including SOKE-TLS ciphersuites, in the TLS ini-
tial ClientHello message. It includes a nonce Nc

as well. (In the TLS specification, this nonce is
known as ClientHello.random.)

(b) The server specifies the ciphersuite to be used,
selected from the client’s list, by using a TLS
ServerHello message. It also includes a nonce
Ns (known as ServerHello.random).

Note. Each SOKE ciphersuite specifies a symmetric en-
cryption algorithm (AES-CBC with either 128-bit or
256-bit keys) as well as an integrity algorithm (HMAC-
SHA1) to use once the handshake has completed. Also,
appriorate prime-order groups are standardized in the
ciphersuite specification; they are equipped with two
generators g and U that have been generated verifi-
ably pseudo-randomly to provide assurance that no-
one knows logg U (see [1]).

2. Compute Diffie-Hellman Secret.

(a) First, the server generates the random private ex-
ponent y and computes the Diffie-Hellman public
key Y = gy. The public key is sent to the client
in the form of a ServerKeyExchange message, to-
gether with the server’s identity.

(b) If the server holds a private key and certificate
suitable for signing, then in specific SOKE ci-
phersuites the server additionally sends the cer-
tificate to the client via a Certificate message.
In this case the ServerKeyExchange message ad-
ditionally contains a signature on the ephemeral
Diffie-Hellman public key made with the server’s
long-term key—similar to non-anonymous stan-
dard Diffie-Hellman ciphersuites in TLS (cf. [13]).

(c) The server then sends an empty message in the
form of a ServerHelloDone to indicate that the
“hello” phase is completed.

(d) If the server has sent a Certificate message, the
client verifies the signature.

(e) The client generates its random private exponent
x and computes the second Diffie-Hellman public
key as X = gx. That latter key is encrypted
(using a password) as the product of the key with
the password-based mask: X? = gx × Upw . The
client encapsulated its name and the encrypted
value in the ClientKeyExchange message which
is sent out.

(f) The client and the server can now compute the
common Diffie-Hellman secret Z = gxy from the
values they received in the ServerKeyExchange

and ClientKeyExchange messages, respectively.

Note. In the protocol description, C and S are strings
giving the client identity and server identity, respec-
tively (i.e., a user name and a server or “realm” name).
The password for the user denoted by C is a string pw.
Observe that the client identity C and the password pw
are not used within the protocol before the server has
chosen a SOKE ciphersuite and transmitted the server
identity S. This means that a user only needs to pro-
vide C and pw after seeing that a SOKE handshake
with S is going on. For example, HTTP servers might
required password-based ciphersuites only for specific
subtrees of their URL space by requesting a TLS rene-
gotiation if necessary, and the server identity might
depend on the specific URL.

A detail not shown in the figure is that the server, with
its ServerKeyExchange message, will also send an in-
dex into the list of standardized groups for SOKE (such
as 0, 1, 2, . . . for standardized 1024-bit, 1536-bit, 2048-
bit, . . . prime moduli with appropriate subgroups).
The client should display the server’s choice of group
to the client, and the user should provide his password
only if he agrees with the group.

Note that when the client receives Y from the server
and when the server receives X? from the client, it is
implicit that the respective recipient performs a group
membership test: it is a fatal TLS handshake failure
if Y or X? is not a group member.

3. Compute Pre-Master Secret and Authentica-
tion Key.

(a) The parties extract the randomness in the Diffie-
Hellman result to form the pre-master secret as:
PreMasterSecret = Hash(C, S, pw , X?‖Y ‖Z).



Client C Server S
(password pw) (password pw)

accept← false accept← false
Choose ciphersuite:

choose Nc
R← {0, 1}∗

ClientHello : (Nc, . . .)−−−−−−−−−−−−−−−−−→
ServerHello : (Ns, . . .)←−−−−−−−−−−−−−−−−− choose Ns

R← {0, 1}∗

Compute Diffie-Hellman secret:

choose y
R← Z?

q , compute Y ← gyServerKeyExchange : (S, Y )
ServerHelloDone

←−−−−−−−−−−−−−−−−−−−−
choose x

R← Zq, compute X ← gx

encrypt X? ← X × Upw ClientKeyExchange : (C, X?)
−−−−−−−−−−−−−−−−−−−−−−→ decrypt X ← X?/Upw

Z = Y x = Xy

Compute pre-master secret and authentication key:

PreMasterSecret = Hash(C, S, pw , X?‖Y ‖Z)
AuthKey = PRF1(PreMasterSecret, Nc‖Ns)

Compute authenticators:

AuthC = MAC.SignAuthKey(“client finished”, . . .) AuthS = MAC.SignAuthKey(“server finished”, . . .)

Abort if verification fails. Else:
Authenticator : AuthS←−−−−−−−−−−−−−−−−−

accept← true
Authenticator : AuthC

[ChangeCipherSpec]
−−−−−−−−−−−−−−−−−→ Abort if verification fails. Else:

accept← true[ChangeCipherSpec]
←−−−−−−−−−−−−−−

Compute master secret and key material as in standard TLS:

MasterSecret = PRF2(PreMasterSecret, Nc‖Ns)
KeyBlock = PRF3(MasterSecret, Ns‖Nc)

←−−−−−−−−−− Secure Channel −−−−−−−−−−→

Figure 1: The full handshake for SOKE-TLS ciphersuites.

(b) The pre-master secret is used as a means to derive
the authentication key AuthKey used by the par-
ties to perform the mutual authentication; we de-
fine AuthKey = PRF1(PreMasterSecret, Nc‖Ns).
This key derivation is performed based on the
standard TLS pseudo-random function PRF (see
[13, Sec. 5]). The function PRF1(PreMasterSecret,
z) used here is specific to SOKE ciphersuites; its
value is obtained as PRF(PreMasterSecret, “au-
thentication key”, z).

Note. Here the randomness extractor function Hash(z1,
z2, z3, z4) is defined as a function with multiple inputs.
The reason for this is that while we assume that group
elements can be represented as fixed-length strings,
the same does not hold for the strings C, S, and pw .
A function Hash1(z) in a single input can be used
to implement Hash by defining Hash(z1, z2, z3, z4) =
Hash1

`
SHA1(z1)‖SHA1(z2)‖SHA1(z3)‖z4

´
. The func-

tion Hash1(z), in turn, can be instantiated by using
SHA1(constant〈0〉‖z)‖SHA1(constant〈1〉‖z)‖. . . Other

ways to instantiate Hash1 are discussed in [6].

4. Compute Authenticators.

(a) Both parties use AuthKey to produce the authen-
ticators AuthC and AuthS . More precisely, the
authenticator is set as a MAC on “finished label ‖
hash of handshake”, in which finished label is the
string “client finished” or “server finished”, de-
pending on which party is sending the respective
message, and where hash of handshake denotes
the hash of the concatenation of all the handshake
messages sent so far in both directions exactly as
would be used for the Finished message in other
TLS ciphersuites (i.e., the MD5 hash concate-
nated with the SHA-1 hash). The server sends
its Authenticator message first.

(b) The client first checks the server’s authenticator,
and, if correct, sends its own Authenticator, and
then proceeds to the ChangeCipherSpec message.



(c) The server then checks the client’s authen-
ticator, and, if correct, replies with the
ChangeCipherSpec message as well.

Note. Usual TLS ciphersuites send Finished mes-
sages for authentication after switching to the newly
negotiated key material (KeyBlock) in the TLS record
layer (which event is indicated by a ChangeCipherSpec

message). This approach, however, would violate the
security notion that SOKE ciphersuites are designed
to achieve. Instead, SOKE ciphersuites make use of
Authenticator messages; the client does not send its
Authenticator and ChangeCipherSpec before it has
verified the server’s Authenticator, and the server
delays its ChangeCipherSpec until it has verified the
client’s Authenticator. Note that the Authenticator

message does not undergo any processing using the
KeyBlock, since it precedes the ChangeCipherSpec;
this is different from the handshake in other TLS ci-
phersuites where Finished is sent in an TLS record
processed under key material KeyBlock (see [13]).

5. Compute Master Secret and Key Material. The
material KeyBlock is the bit string assigned to the Ini-
tialization Vectors (IVs), MAC secrets, and encryption
keys which will protect the application sensitive mes-
sages. KeyBlock, exactly as in other TLS ciphersuites,
is obtained indirectly, in two steps:

(a) Both parties compute a common MasterSecret,
using a function PRF2 (PreMasterSecret, z) that is
defined as PRF (PreMasterSecret, “mastersecret”,
z).

(b) The MasterSecret is then used to obtain KeyBlock
as a function PRF3(MasterSecret, z), which is de-
fined as PRF(MasterSecret, “key expansion”, z).
This two-stage derivation process is used by TLS
session resumption: a new connection with new
client and server nonces Nc and Ns can continue
to use a previously negotiated MasterSecret and
derive a new KeyBlock.

Note. Another change from the standard TLS hand-
shake message flow, besides having Authenticator

sent before ChangeCipherSpec, is that for SOKE the
server and not the client provides its authentication
message first. This is necessary to protect clients
against dictionary attacks: if the client was to make
the start, its Authenticator message could be used by
a malicious server that does not know pw to try out
different passwords in an offline attack, looking which
one results in the Authenticator message as observed.

4.2 Additional Remarks
4.2.1 How the Password Becomes an Exponent
Since the password pw appears as an exponent in the com-
putations for SOKE ciphersuites, some additional hash is
needed to obtain this exponent from the password string
password . In the protocol description, we do not care about
details of the hash and simply use the hash result pw (in the
exponent space) as the “effective password” instead: any-
one knowing pw is actually able to impersonate the client
or the server, and the security proof shows that attacking

the protocol reduces to finding pw . In other words, at the
protocol level, pw is the password needed for authentication
and password is just a way to remember it.

4.2.2 Password Derivation for Different Groups
Remember that the protocol should allow using one out of
a set of different groups (the client likely wants to see the
group being used before typing his password). So for group i,
the effective password pw may be defined in the form

pw i = hash(i ‖ password) mod qi.

4.2.3 Using the Password with Several Servers
The password string password should be hashed before be-
ing used as an exponent pw . If the protocol is changed again
to use (C, S, pw) instead of just password to derive the expo-
nent, we obtain a security improvement in practice in that
a client can use the same password (string) with multiple
servers and yet the respective secrets (effective passwords)
will be different. (However, every server could run a dictio-
nary attack to recover the common underlying password.)

5. SECURITY ANALYSIS OF SOKE-TLS
Theorem 5.1. [FS-AKE Security] Let us consider the

above protocol, over a group of prime order q, where
Password is a dictionary of size N , equipped with the uni-
form distribution. Let A be an adversary running within
a time bound t that makes less than qactive active sessions
with the parties and qpassive passive eavesdropping queries,
and asks qhash hash queries. Then we have

SuccauthS
SOKE(A) ≤ 2qactive

N

+qhash(qactiveqhash + qactive + 1)× Succcdh(t + 2τe)

+2
qhash

2

2`m
+ 2qhash

2 × Succmac(t, 0) +
qhash

2

2`+1

+2qsession × Advprf(t, 2) +
qactive

2

2q
+

qpassive
2

2q2

Advake−fs
SOKE (A) ≤ 6qactive

N

+2qhash(3qactiveqhash + qactive + 1)× Succcdh(t + 2τe)

+8
qhash

2

2`m
+ 8qhash

2 × Succmac(t, 0) +
qhash

2

2`

+8qsession × Advprf(t, 2) +
qactive

2

q
+

qpassive
2

q2

where τe denotes the computational time for an exponentia-
tion in G.

Proof. We are interested in the event S, which occurs
if the adversary correctly guesses the bit b involved in the
Test-queries. We furthermore consider server (unilateral)
authentication: event A is set to true if a client instance
accepts, without any server partner. Let us remember that
in this attack game, the adversary is allowed to use Corrupt-
queries.



Game G0: This is the real protocol, in the random-oracle
model:

Advake−fs
SOKE (A) = 2Pr[S0]− 1 (1)

AdvauthS
SOKE(A) = Pr[A0].

Let us furthermore define the event Sw/tA = S ∧ ¬A, which
means that the adversary wins the Real-Or-Random game
without breaking authentication.

Game G1: In this game, we simulate the hash ora-
cles (Hash, but also an additional hash function Hash′ :
({0, 1}?×)3 → {0, 1}` that will appear in the Game G3

as usual by maintaining hash lists ΛHash and ΛHash′ . We
also simulate all the instances, as the real players would do,
for the Send-queries and for the Execute, Test and Corrupt-
queries.

Game G2: We cancel games in which some collisions ap-
pear on the transcripts (C, S, X?, Y ), and on the master se-
crets. Regarding the transcripts, the distance follows from
the birthday paradox since at least one element of each tran-
script is generated by an honest participant (at least one of
them in each of the qactive active attacks, and all of them
in the qpassive passive attacks). Likewise, in the case of the
master keys, a similar bound applies since Hash is assumed
to behave like a random oracle (which outputs `-bit bit-
strings):

Pr[Coll2] ≤
qactive

2

2q
+

qpassive
2

2q2
+

qhash
2

2`+1
. (2)

Game G3: In this game, we show that the success prob-
ability of the adversary is negligible in passive attacks via
Execute-queries. To do so, we modify the way in which we
compute the pre-master secret PreMasterSecret in passive
sessions that take place before or after a Corrupt-query. More
precisely, whenever the adversary asks a Execute-query, we
compute the pre-master secret PreMasterSecret as Hash′(C,
S, X?‖Y ) using the private oracle Hash′ instead of the oracle
Hash. As a result, it holds that any value of PreMasterSecret
computed during a passive session becomes completely in-
dependent of Hash and DH-ResultC/S , which are no longer
needed in these sessions. Please note that the oracle Hash is
still being used in active sessions.

The games G3 and G2 are indistinguishable unless the ad-
versary A queries the hash function on (C, S, pw, X?‖Y ‖
DH-ResultC/S), for such a passive transcript: we denote
such event by AskH-Passive-Exe. In order to upper-bound
the probability of this event, we consider an auxiliary game
G3’, in which the simulation of the players changes—but
the distributions remain perfectly identical. Since we do not
need to compute DH-ResultC/S for the simulation of Execute-

queries, we can simulate Y as V y?

and X? as gx?

. If event
AskH-Passive-Exe occurs, one can extract K = CDHg,G(V y?

,

gx?

/Upw ) = V x?y?

/CDHg,G(U, V )y?pw from ΛHash:

Pr[AskH-Passive-Exe3] ≤ qhash × Succcdh
g,G(t + 2τe). (3)

Game G4: In this game, we consider passive attacks via
Send-queries, in which the adversary simply forwards the

messages it receives from the oracle instances. More pre-
cisely, we replace Hash by Hash′ when computing the value
of PreMasterSecret whenever the values (C, S, X?‖Y ) were
generated by oracle instances. Note that we can safely do
so due to the absence of collisions in the transcript. Like in
G3, any value PreMasterSecret computed during such pas-
sive sessions becomes completely independent of Hash and
DH-ResultC/S .

As in previous games, we can upper-bound the difference in
the success probabilities of A in games G4 and G3 by upper-
bounding the probability that A queries the hash function
Hash on (C, S, pw, X?‖Y ‖DH-ResultC/S), for such a passive
transcript. We call this event AskH-Passive-Send. Towards
this goal, we consider an auxiliary game G4’, in which the
simulation of the players changes slightly without affecting
the view of the adversary. In this simulation, we choose at
random one of the Send(S, “start”)-queries being asked to S
and we reply with Y = V (hoping that is one of the sessions
that the adversary simply forwards the message). On the
client side, we change the simulation whenever it receives as
input a message that was generated by a server instance, by
computing X? as gx?

. If the event AskH-Passive-Send occurs
and our guess for the active session is correct, then we can
extract K = CDHg,G(gx?

/Upw , V ) = V x?

/CDHg,G(U, V )pw

from ΛHash:

Pr[AskH-Passive-Send4] ≤

qactive × qhash × Succcdh
g,G(t + 2τe). (4)

Game G5: In this game, we make one of the most signifi-
cant modifications. We replace the oracle Hash by the pri-
vate oracle Hash′ whenever the input to this query contains
an element that was not generated by an oracle instance
and no Corrupt-query has occurred. More precisely, if ei-
ther the value X? or Y in the Hash-query (C, S, pw, X?‖Y ‖
DH-ResultC/S) was generated by the adversary, then we re-
ply to this query using Hash′(C, S, X?‖Y ) as long as no Cor-
rupt-query has occurred. Clearly, the games G5 and G4

are indistinguishable as long as A does not query the hash
function Hash on an input (C, S, pw, X?‖Y ‖DH-ResultC/S),
where DH-ResultC/S = CDHg,G(X?/Upw , Y ), for some exe-
cution transcript (C, S, X?, Y ). We denote this bad event
by AskHbC-Active. Thus,

|Pr[A5]− Pr[A4] | ≤ Pr[AskHbC-Active] (5)

|Pr[Sw/tA5]− Pr[Sw/tA4] | ≤ Pr[AskHbC-Active]

Game G6: In this game, we replace the pseudo-random
functions by truly random functions for all the sessions in
which the value of PreMasterSecret has been derived with the
private oracle Hash′. Since the value PreMasterSecret that is
being used as the secret key for the pseudo-random function
is independently and uniformly distributed, the distance can
be proven by a classical sequence of hybrid games, where
the counter is on the pre-master secrets. That is, each time
a new pre-master secret is set, we increment the counter.
Then, Pr[Sw/tA6] = 1

2
.

|Pr[A6]− Pr[A5] | ≤ qsession Advprf(t, 1) (6)

|Pr[Sw/tA6]− Pr[Sw/tA5] | ≤ qsession Advprf(t, 2).



Game G7: In this game, we exclude collisions on MAC
keys for all the sessions in which the pre-master secret
PreMasterSecret has been derived with the private oracle
Hash′(which event is denoted CollPRF). Let `m denote the
length of MAC keys. Since for these sessions, the MAC keys
are independently and uniformly distributed, the probabili-
ties differ from those in the previous game by at most

Pr[CollPRF7] ≤ qhash
2/2`m . (7)

Game G8: In this game, we exclude games wherein for
some transcript (C, S, X?, Y ), there are two passwords pw0

and pw1 such that the corresponding pre-master secrets lead
to a collision of the MAC-values (which event is denoted
CollM).

Since we know that MAC-keys are truly random and differ-
ent from each other at this point, the event CollM means
that a MAC with a random key (one of the qhash possible
values) may be a forgery for another random key. Thus, by
randomly choosing the two indices for the hash queries, we
get the following upper-bound:

Pr[CollM8] ≤ qhash
2 × Succmac(t, 0). (8)

Game G9: Before proceeding with the analysis, we first
split the event AskHbC-Active into two disjoint sub-cases
depending on whether the adversary impersonates the
client or the server. We denote these events AskHbCwS
and AskHbCwC, respectively. In this game, we focus on
AskHbCwC only. We now reject all the authenticators sent
by the adversary for all the sessions in which the pre-master
secret PreMasterSecret has been derived with the private or-
acle Hash′: Pr[A9] = 0. In order to evaluate the distance
between the games G9 and G8, we consider the probability
of the event AskHbCwC, in which the adversary succeeds in
faking the server by sending a valid authenticator before a
Corrupt-query.

To evaluate the probability of event AskHbCwC, we note
that, up to the moment in which a Corrupt-query occurs,
no information on the password pw of a user is revealed
to the adversary, despite the fact that the password is still
used in the computation of X?. To see that, note that, for
any given transcript (X?, Y ) in which X? was created by
an oracle instance and for each password pw , there exists a
value x ∈ Zq such that X? = gxUpw which is never revealed
to the adversary. Moreover, since we have removed collisions
on the pre-master secrets, on the MAC keys, and on the
MAC values, there is at most one password that can lead to
a valid authenticator. As a result, the probability that the
adversary succeeds in sending a valid authenticator in each
session is at most 1/N . Thus, we get

Pr[AskHbCwC9] ≤ qfake−server/N. (9)

Game G10: We finally concentrate on the success probabil-
ity of the adversary in faking the client. What we show in
this game is that the adversary cannot eliminate more than
one password in the dictionary by impersonating a client.
To do so, we first upper-bound the probability that, for
some transcript (X?, Y ) in which Y was created by server
instance, there are two hash queries in ΛHash such that one

has (X?, Y, pw0, K0 = CDHg,G(X?/Upw0 , Y )) and (X?, Y,
pw1, K1 = CDHg,G(X?/Upw1 , Y )). We denote this event
CollH.

In order to upper-bound the probability of event CollH, we
consider an auxiliary game in which the simulation of the
players changes slightly without affecting the view of the ad-
versary. The goal is to use the adversary to help us compute
the computational Diffie-Hellman value of U and V . In this
simulation, we choose at random one of the Send(S, “start”)-
queries being asked to S and we reply with Y = V in the
hope that this is the session which leads to a collision in the
transcript. For all other sessions, Y is simulated as gy. Now,
let us assume that the event CollH happens. If our guess for
the Send(S, “start”)-query was correct, then we can extract
the value CDHg,G(U, V ) as (K1/K0)

u, where u is the inverse
of (pw0 − pw1), by simply guessing the indices of the two
hash queries involved in the collision. We note that u is
guaranteed to exist since pw0 6= pw1. It follows that

Pr[CollH] ≤ qsend × qhash
2 × Succcdh

g,G(t + τe) (10)

When the event CollH does not happen, for each tran-
script (X?, Y ) in which Y was created by server instance,
there is at most one password value pw such that the tuple
(X?, Y, K = CDHg,G(X?/Upw , Y )) is in ΛHash. As a result,
the probability of the adversary in impersonating a client
reduces to trying one password at a time. Thus,

Pr[AskHbCwS10] ≤ qfake−client/N+

qsend × qhash
2 × Succcdh

g,G(t + τe)

This concludes the proof of Theorem 5.1.

6. CONCLUSION
The present paper describes efficient and provably secure
methods for password-based authentication in the TLS pro-
tocol. Besides formal security arguments and good effi-
ciency, these SOKE-TLS ciphersuites offer a message flow
that is convenient in practice because the user identity and
password need only be supplied if one of these ciphersuites
has actually been negotiated in the TLS handshake. We pro-
vide a low-level specification of these ciphersuites for TLS
in [1]. In that document (intended for eventual publica-
tion as an Internet RFC), we specify the ciphersuites, pro-
vide standard group parameters and correct instantiations
for the cryptographic transformations, define data struc-
tures for the handshake messages and the formatting of
data on the wire, as well as additional handshake proto-
col details. The final goal of the authors is to publish as
open source an implementation of these ciphersuites for the
OpenSSL software toolkit conforming to this specification.
This will, we hope, benefit open-source products such as the
Globus Toolkit whose communications’ security is based on
the OpenSSL software.
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APPENDIX
A. EQUIVALENCE OF THE SPCCDH AND

CDH PROBLEMS
Here we show that the Set Password-based Chosen-
Basis Computational Diffie-Hellman SPCCDHg,G problem is



equivalent to the (basic) computational Diffie-Hellman prob-
lem CDHg,G. With same notations as in Section 3.1, if one
has:

Succspccdh(t, s, n) ≥ 1

n
+ ε,

then, with ν = max
˘

1
n
, ε

2

¯
, one has:

Succcdh(2t + τe) ≥
εν

2s2
×

„
1

n
+ ν

«
. (11)

Proof. For proving this relation, one simply applies the
splitting lemma [21]:

Lemma A.1. [Splitting Lemma] Let S ⊂ A×B such that
Pr[(a, b) ∈ S] ≥ α. For any β < α, define

T =
n

(a, b) ∈ A×B Pr
b′∈B

[(a, b′) ∈ S] ≥ α− β
o
.

Then

(i) Pr[T ] ≥ β,

(ii) ∀(a, b) ∈ T, Pr
b′∈B

[(a, b′) ∈ S] ≥ α− β.

Let A be an adversary against the SPCCDHg,G-problem,
with success probability α = 1/n + ε. Then, we can use
the splitting lemma, with β = ε/2, on

A = {(ω, U, X)} and B = {1, . . . , n} ≈ D.

Our adversary B receives as input a random CDHg,G instance
(U, X). It chooses a random tape ω for A: with proba-
bility greater than ε/2, the success probability is greater
than 1/n + ε/2, over the probability space B = {1, . . . , n}.
It is thus a multiple of 1/n, not smaller than 1/n + ν,
where ν is the maximum in {1/n, ε/2}. One first simply
runs A with a random k, and with probability greater than
1/n+ ν, one gets a first set S1 with K = CDHg,G(X, Y/Uk).
One runs A again, with another random k′ 6= k, and
with probability greater than ν, one gets a second set S2

with K′ = CDHg,G(X, Y/Uk′
). Then, CDHg,G(X, U) =

(K/K′)1/(k−k′). By choosing two elements at random in S1

and S2, one gets CDHg,G(X, U) with probability 1/s2.


